

6GHz IMT OPPORTUNITY FOR SOCIETY

6GHz for 5G in APAC

Jesada Sivaraks

Head of Government & Industry Relations, Ericsson Thailand

Powered by:

THE TELECOMMUNICATIONS ASSOCIATION OF THAILAND UNDER THE ROYAL PATRONAGE

Mobile broadband drives economic development

- •\$4.1 trillion of economic value generated globally in 2019 by mobile technologies and services(4.7% of GDP)¹
- •On average, 10% increase in mobile broadband adoption drives a 0.8% increase in GDP, equivalent to \$702 billion based on world GDP in 2019²
- 10 percentage points increase in the growth of IoT connections per inhabitant is associated with 0.23 percentage points growth in Total Factor Productivity (TFP), \$202 billion based on world GDP in 2019³

¹GSMA: The mobile economy 2020 ²Edquist et. al: How important are mobile broadband networks for the global economic development ³Edquist et. al: The Internet of Things and economic growth in a panel of countries

Why 6 GHz?

- Additional mid-bands spectrum will be needed by 2025-2030 to address the IMT-2020 user experience requirements (100Mbit/s in DL and 50Mbit/s in UL) in the most populated cities – depending on the specific assumptions (e.g. end user activity factor, high bands offloading, ...)
- The 6GHz band is ideally suited to meet 5G future capacity needs:
 - Globally allocated already to the mobile service on a primary basis
 - Good balance between coverage and capacity
 - Similar possibilities in terms of coverage to 3.5 GHz
 - Large contiguous blocks available supporting 5G services
 - Potential for wide economies of scale

The 6GHz band has potential in terms of providing coverage and capacity with a healthy ecosystem, leading to satisfy the projected citizens' connectivity needs.

High capacity citywide (urban/suburban) coverage

- Important to assess the needs of the city of the future.
- Each use case contributes to the spectrum needs
- Licensed IMT spectrum can:
 - Provide predictable QoS
 - Provide seamless mobility access
 - Guarantee the reliability, e.g., 99.999%

Source: Analysis Mason, "The 6 GHz opportunity", 2019

IMT (5G-NR) provides similar area coverage in the 6 and 3.5 GHz bands

• 3400-3800 might not be sufficient in the longer run.

Ē

- The 6GHz band could be a good complement to address the forecasted capacity needs.
- There is a small gap between 6GHz and 3.5GHz coverage (DL and UL); It could be compensated with new BS architectures and UE capability enhancements.

E2E Ecosystem is in shape

2020		2021	2022	2023	202	4	2025
		Share and Compatibility Study				3 tification	
			6GHz NR Standardization				
	Prototype R&D		Field Test & Report		Chipset BS	Terminal	
		6GHz IMT E2E ecosystem establishment					

ITU-R: Coexistence study with incumbents for WRC-23

3GPP: 6GHz band definition and other necessary enhancements for coverage and capacity improvements

- Study item (RP-200513) for providing the system parameters to ITU-R is due to complete in December 2020.
- Work item for "Introduction of 6GHz NR licensed bands" (RP-202114) has started, covering 6425-7125 MHz and 5925-7125 MHz
- <u>RCC Commission on Spectrum and Satellite Orbits liaised with 3GPP (RP-201438) expressing their intent to</u> <u>submit a proposal to WRC-23 for use of 6425-7125 MHz for IMT system</u>

R&D: Prototype was developed and is now ready for trials.

Sharing with Incumbent : fixed satellite services

- FSS UL protection is a global issue and thus agreement on protection at ITU level is important
- 3GPP ecosystem available for the 3.3-4.2 GHz and 4.4-5.0 GHz ranges
- Observations for studies towards WRC-23

Ē

- Coexistence may be facilitated by the adoption of Active Antenna Systems with beamforming (Massive MIMO)
- Sharing studies need to apply and use recent developed and accurate clutter loss, building entry loss and propagation models

Industry voice on 6GHz

Ę

6GHz IMT statement

- 4 webinars on "6GHz IMT opportunity for society" were held. Two more webinars are planed for RCC and MENA.
- 23 partners co-signed 6GHz IMT statement: to carefully assess the opportunity of IMT identification at the WRC-23 within the 6GHz band which will be important to establish the large scale ecosystem for this band.
- More details can be found on: <u>www.6GHzopportunity.com</u>

Trials on 6GHz IMT are planned

Ę

Source: LATAM 6GHz Webinar, 15th Dec, 2020

Source: APAC 6GHz Webinar, 19th Jan,2021

WRC-23 AI 1.2: great opportunity to ensure spectrum harmonization for IMT

• WRC-23 AI 1.2: to consider identification of the frequency bands 3 300-3 400 MHz, 3 600-3 800 MHz, 6 425-7 025 MHz, 7 025-7 125 MHz and 10.0-10.5 GHz for International Mobile Telecommunications (IMT), including possible additional allocations to the mobile service on a primary basis, in accordance with Resolution 245 (WRC-19);

 History of C-band: It took more than 16 years from initializing C-band work in ITU-R to releasing to commercial network deployment

			2 nd IMT Identification	3 rd IMT identification	
	1 st Identification		R1 and R2 Regional identification	More R3 countries join FN	
New Al	Multi-countries FNs	New AI for WRC-15	R3 multi-countries FN	Almost global identification	
@WRC-03	@WRC-07	@ WRC-12	@WRC-15	@ WRC-19	
2003	2007	2012	2015	2019	r .

The recommendation for 6GHz

- WRC-23 is a great opportunity to ensure spectrum harmonization for IMT
- Support 6GHz IMT identification at WRC-23 to ensure IMT sustainable evolution in a long term

Thank you!

amy.yemin@huawei.com cgomez@gsma.com guillaume.mascot@nokia.com hakan.ohlsen@ericsson.com tian.dao@zte.com

Sharing with Incumbent : Fixed Service

FS Typical applications

- Long distance P-P links / backbone links (12-65 km)
- Mainly in rural / remote areas (at least one hop)
- At known locations with known characteristics
- Mainly supporting mobile and broadcasting networks
- Mostly link-by-link assignments (block assignments in few cases)

<u>IMT – FS coexistence: Toolbox</u>

• **Coordination** (spectrum sharing)

• on a case-by-case basis by network planning:

- The coordination zone depends on the antenna positions, parameters and FS protection criteria (co-channel and LoS operation ssumed)
- As an alternative, depending on operators preference, migration of fixed links to other frequency bands could be a possibility